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Abstract

We consider axisymmetric time-harmonic wave motions generated by point-load excitation. Such problems are

conventionally solved by the use of integral transform techniques. A typical example is the wave motion generated by a

point force in an elastic layer. In this article, it is shown that, in a much simpler manner, the unknown modal coe�cients

for a superposition of wave modes can be conveniently obtained by the use of the Betti±Rayleigh reciprocity theorem.

In this integral relation, which connects two elastodynamic states, one of the states is a wave mode of the actual wave

®eld, whereas the other is an appropriately selected auxiliary solution. Simple expressions for the unknown coe�cients

quickly follow. The approach is also applied to the surface wave ®eld generated by a time-harmonic normal point load

on a half-space, where the amplitude constant of the generated surface wave motion is obtained. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Reciprocity theorems are among the classical results of acoustic, elastodynamic and electromagnetic
theory. The various forms of reciprocity theorems, together with applications, have been discussed in some
detail by de Hoop (1995). In general terms, a reciprocity theorem of the theory of elasticity provides an
integral relation between two states of the same linearly elastic body. For the elastostatic case, the principal
theorem is due to Betti (1872). A more general theorem, which includes the elastodynamic case, was given
by Rayleigh (1873). In the present article, we consider the reciprocal theorem for time-harmonic elasto-
dynamics, and we present what we believe to be a new application.

In the ®rst part of this paper, the reciprocity theorem is used to determine the coe�cients of wave mode
expansions for elastic wave guides. The example that is considered is the wave motion produced in an
elastic layer by a time harmonic point load applied normal to the faces of the layer. Point load problems are
usually solved by an application of the Hankel transform technique, and an evaluation of the inverse
transform by contour integration and residue calculus. That approach does in fact result in the displacement
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expressions that are superpositions of wave modes. In this article, the displacements are directly expressed
as wave mode expansions, and the coe�cients are obtained by applying the reciprocity theorem to the wave
mode expansions together with a suitably selected auxiliary solution.

The general formulation of the wave ®elds follows a recent article by Achenbach (1998). In a Cartesian
coordinate system (x1; x2; z), the displacement components are expressed in terms of a function
u�x1; x2�exp�ixt� which satis®es a simple reduced wave equation, and which acts as a carrier wave for
propagation parallel to the x1; x2 plane. The carrier wave supports thickness motions that depend on the z
coordinate only. This formulation is particularly suited for Lamb waves in a layer and surface waves on a
half-space. For the speci®c problems considered in this article, Hankel functions represent the appro-
priate carrier waves. The analysis of the thickness motions results in the Rayleigh±Lamb frequency
equation for the layer and the well-known Rayleigh equation for the velocity of surface waves on a half-
space.

Numerous treatments of point source excitation of an elastic layer can be found in the technical liter-
ature. The review article on guided waves by Chimenti (1997) has a section on this topic which lists quite a
large number of articles that are based on the application of integral transforms and/or numerical tech-
niques, particularly, articles of a more recent origin and articles dealing with anisotropic plates. We also
mention the work of Miklowitz (1962), Weaver and Pao (1982), Santosa and Pao (1989) and Vasudevan
and Mal (1985). These articles are for transient loads, and they use integral intransforms, but the role of
wave modes was discussed in some detail.

We also apply the reciprocity theorem to calculate the surface wave motion generated by the application
of a point force to a half-space. It is of interest that the calculation does not include a consideration of the
body waves generated by the point load. It is shown that the result is the same as obtained in the con-
ventional manner by the use of the integral transform approach.

2. Formulation

A homogeneous, isotropic, linearly elastic material is referred to a Cartesian coordinate system with axes
x1; x2 and z. Following a previous article by Achenbach (1998), we seek solutions for the displacement
components in the general forms

ua�x; t� � 1

k
V �z� ou

oxa
�x1; x2�eixt; �1�

uz�x; t� � W �z�u�x1; x2�eixt; �2�
where k is a wave-number-like quantity

k � x=c: �3�
In the following analysis, the harmonic time factor exp�ixt� will be omitted, and Greek indices will ex-
clusively refer to the x1 and x2 axes.

Solutions of forms (1) and (2) were considered by Achenbach (1998), who showed that these expressions
satisfy the elastodynamic equations of motion if the dimensionless function u�x1; x2� is taken as the solution
of

u;bb � k2u � 0; �4�
where repeated su�ces indicate a summation, and V �z� and W �z� are solutions of the following system of
ordinary di�erential equations:
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�k� l� dW
dz
� l

k
d2V
dz2
� qx2

k
V �z� � k�k� 2l�V �z�; �5�

�k� 2l� d
2W

dz2
� qx2W �z� � �k� l�k dV

dz
� lk2W �z�: �6�

Here k and l are Lam�eÕs constants and q is the mass density. Solutions of forms (1) and (2) are particularly
convenient for bodies with one or more free surfaces or interfaces parallel to the x1x2 plane. Examples are
Lamb waves in a layer or surface waves in a half-space. For such cases, the function u�x1; x2� acts as a
carrier wave for the propagation in planes parallel to the x1x2 plane, while the functions V �z� and W �z�
describe the thickness motions for Lamb waves and the depth variations for surface waves.

In this article, we will focus the attention on wave motions that are axially symmetric relative to the z
axis. The relevant solution of Eq. (4) for an outgoing wave is then a Hankel function:

u�r� � H �2�0 �kr�; where r � �x2
1 � x2

2�1=2: �7�
We can equally well consider an incoming wave, i.e., a wave which converges on r � 0,

u�r� � H �1�0 �kr�: �8�
For the outgoing wave case, Eqs. (1) and (2) simplify to

ur�r; z� � ÿV �z�H �2�1 �kr�; �9�

uz�r; z� � W �z�H �2�0 �kr�: �10�
Expressions for the corresponding stresses can be obtained from HookeÕs law as

rrz � Rrz�z�H �2�1 �kr�; �11�

rzz � Rzz�z�H �2�0 �kr�; �12�

rrr � Rrr�z�H �2�0 �kr� � Rrr�z� 1r H �2�1 �kr�; �13�

where

Rrz�z� � ÿl
dV
dz

�
� kW �z�

�
; �14�

Rzz�z� � ÿl
c2

L

c2
T

kV
��

ÿ dW
dz

�
ÿ 2kV

�
; �15�

Rrr�z� � ÿl
c2

L

c2
T

kV
��

ÿ dW
dz

�
� 2

dW
dz

�
; �16�

Rrr�z� � 2lV : �17�
In these expressions, cL and cT are the velocities of longitudinal and transverse waves:

c2
L �

k� 2l
q

and c2
T �

l
q
: �18a; b�
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3. Reciprocity theorem

The reciprocity theorem relates two elastodynamic states of the same body. For two distinct time-
harmonic states of the same frequency, labeled by superscripts A and B: f A

i ; u
A
i ; r

A
ij , and f B

i ; u
B
i , rB

ij, where f A
i

and f B
i are body forces, we have for a region V with boundary S (Achenbach et al., 1982, p. 34)Z

V
f A

i uB
i

ÿ ÿ f B
i uA

i

�
dV �

Z
S
�uA

i rB
ij ÿ uB

i rA
ij � nj dS; �19�

where nj are the components of the outward normal.
Let us now consider a circular domain of an elastic layer de®ned by jzj 6 h; r 6 b with two states, both

of which satisfy rzz��h� � rzr��h� � 0, but where state A is the solution to a point load of magnitude P
applied in the z direction at x1 � x2 � 0; z � 0, and state B is an axially symmetric nonsingular solution in
the domain of interest. After integrating over the polar angle h, Eq. (19) yields

PuB
z �0� � 2pb

Z h

ÿh
uA

r rB
rr

�� ÿ uB
r rA

rr

�� uA
z rB

rz

� ÿ uB
z rA

rz

�	
dz; �20�

where all terms in the integrand are de®ned at r � b.
The reciprocity theorem becomes useful as an aid in problem solving if we can select an appropriate

nonsingular solution for state B. In this article, we will explore such auxiliary solutions of the following
general forms:

uB
r � ÿ1

2
V B�z� H �2�1 �kr�

h
� H �1�1 �kr�

i
; �21�

uB
z � 1

2
W B�z� H �2�0 �kr�

h
� H �1�0 �kr�

i
: �22�

The displacements in Eqs. (21) and (22), which are the sums of an outgoing and an incoming wave, are
bounded at r � 0. It can be veri®ed that the left-hand side of Eq. (20) becomes

PuB
z �0� � PW B�0�: �23�

To evaluate the right-hand side, we introduce the expressions given by Eqs. (9)±(11), (13), (14) and (16), (17)
for state A, and (21) and (22) and the corresponding stresses for state B. After some manipulation, Eq. (20)
reduces to

PW B�0� � pb�IAB ÿ IBA�H �2�0 �kb�H �2�1 �kb�
� pbIABH �1�1 �kb�H �2�0 �kb� ÿ pbIBAH �2�1 �kb�H �1�0 �kb�; �24�

where

IAB �
Z h

ÿh
�RA

rr�z�V B�z� � RB
rz�z�W A�z��dz; �25�

and IBA follows from Eq. (25) by interchanging A and B. Next, it will be shown that Eq. (24) can be used to
actually express the ®elds radiating from a point force.

4. Point force on a layer

The theory of the preceding sections will now be used to determine expressions for the wave motion in an
elastic layer, de®ned by jzj 6 h; 0 6 r <1, which is subjected to a time-harmonic point load directed along
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the z axis, and applied at z � 0, i.e., in the mid-plane of the layer. Clearly the elastodynamic displacement
®elds will be antisymmetric relative to the plane z � 0, and axisymmetric with respect to the z axis.

Wave motion in an elastic layer can be studied in terms of an in®nite number of wave modes that may be
separated into symmetric and antisymmetric modes relative to the mid-plane of the layer. For a given value
of the circular frequency, x, the wave number, kn, is one of the many solutions of the Rayleigh±Lamb
frequency equation. For displacement solutions of the general forms given by Eqs. (9) and (10), the wave
modes have been stated by Achenbach (1998). For the antisymmetric modes, we have

V n�z� � a1 sin�pz� � a2 sin�qz�; �26�

W n�z� � a3 cos�pz� � a4 cos�qz�; �27�
where

a1 � 2 sin�qh�; a2 � ÿ��k2
n ÿ q2�=k2

n � sin�ph�; �28a; b�

a3 � 2�p=kn� sin�qh�; a4 � ��k2
n ÿ q2�=qkn� sin�ph�: �29a; b�

In these expressions

p2 � x2

c2
L

ÿ k2
n ; �30a�

q2 � x2

c2
T

ÿ k2
n : �30b�

The corresponding expressions for the stresses are

Rn
rz�z� � l�a5 cos�pz� � a6 cos�qz��; �31�

Rn
zz�z� � l a7 sin�pz�� � a8 sin�qz��; �32�

Rn
rr�z� � l�a9 sin�pz� � a10 sin�qz��; �33�

where

a5 � ÿ4p sin�qh�; a6 � ÿ �k2
n

h
ÿ q2�2=qk2

n

i
sin�ph�; �34a; b�

a7 � �2�k2
n ÿ q2�=kn� sin�qh�; a8 � ÿ�2�k2

n ÿ q2�=kn� sin�ph�; �35a; b�

a9 � �2�2p2 ÿ k2
n ÿ q2�=kn� sin�qh�; a10 � �2�k2

n ÿ q2�=kn� sin�ph�: �36a; b�
It may be checked that Rh

zz�h� � 0 is identically satis®ed, whereas Rn
rz�h� � 0 yields the Rayleigh±Lamb

frequency equation for antisymmetric modes

tan�qh�
tan�ph� � ÿ

�k2
n ÿ q2�2
4pqk2

n

: �37�

For a speci®c value of x, Eq. (37) is an equation for kn. For each solution kn, Eqs. (26) and (27) and (31)±
(33) de®ne a speci®c mode, i.e., a set of displacements and stresses that satisfy the equations of motion and
the boundary conditions.

Intuitively, it is now to be expected that, at least at some distance from the applied load, the dis-
placements generated by the point load, applied in the mid-plane of the layer, can be expressed as a
summation over antisymmetric modes:
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uP
r � ÿ

X1
m�0

Dm�a1 sin�pz� � a2 sin�qz��H �2�1 �kmr�; �38�

uP
z �

X1
m�0

Dm�a3 cos�pz� � a4 cos�qz��H �2�0 �kmr�; �39�

where a1; a2; a3 and a4 are de®ned by Eqs. (28a,b) and (29a,b) and km are the solutions of Eq. (37) for
speci®ed x. These solutions represent outgoing waves, but it remains to determine the constants Dm such
that uP

r and uP
z correspond to the prescribed loads. In the remainder of this paper, we propose a simple

method to determine the constants.
Now, let us return to the reciprocity relation represented by Eq. (19). For the two states, A and B, we

select two modes: mode m with wave number km of Eqs. (38) and (39), and mode n with wave number kn of
the auxiliary solution given by Eqs. (21) and (22). Instead of IAB we then have

Imn �
Z h

ÿh
�Rm

rr�z�V n�z� � Rn
rz�z�W m�z��dz: �40�

It has been shown by Achenbach and Xu (1998) that

Imn � 0 for m 6� n; �41�
whereas for m � n we have

Inn � l�c1 sin2�ph� � c2 sin2�qh��; �42�
where

c1 � �k
2
n ÿ q2��k2

n � q2�
2q3k3

n

�2qh�k2
n ÿ q2� � �k2

n � 7q2� sin�2qh��; �43�

c2 � k2
n � q2

pk3
n

�4k2
nphÿ 2�k2

n ÿ 2p2� sin�2ph��: �44�

Inspection of Eq. (24) now shows that by virtue of Eq. (41), the right hand vanishes completely for
m 6� n. For m � n, the ®rst term vanishes and Eq. (24) becomes

PW n�0� � pbInn H �1�1 �knb�H �2�0 �knb�
h

ÿ H �2�1 �knb�H �1�0 knb�
i
Dn: �45�

Using the following identity for Hankel functions (McLachlan, 1961, p. 198)

H �1�v �n�
d

dn
H �2�v �n� ÿ

d

dn
H �1�v �n�H �2�v �n� � ÿ

4i

pn
�46�

for v � 0 and n � knb, Eq. (45) yields

Dn � kn

4i

PW n�0�
Inn

; �47�

where Inn is de®ned by Eq. (42).
The expansions for the wave motion given by Eqs. (38) and (39) can easily be generalized to a point load

applied at an arbitrary position in the interior of the layer, by splitting the problem in a symmetric and an
antisymmetric problem.
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5. Point force on a half-space

The expressions given by Eqs. (9)±(13) are also very suitable for surface waves. For a half-space z P 0 we
seek solutions of Eqs. (5) and (6) of the general forms that decay exponentially with depth. Using Eqs. (9)±
(13), such solutions have been derived by Deutsch et al. (1999) as

V R�z� � d1eÿpz � d2eÿqz; �48�

W R�z� � d3eÿpz ÿ eÿqz; �49�
where

p2 � k2 ÿ x2

c2
L

and q2 � k2 ÿ x2

c2
T

; �50a; b�

d1 � ÿ 1

2

k2 � q2

kp
; d2 � q

k
; �51a; b�

d3 � 1

2

k2 � q2

k2
: �52�

It can be veri®ed that Eqs. (48) and (49) satisfy the system of ordinary di�erential equations (5) and (6). The
corresponding stress terms follow from Eqs. (14)±(16) as

RR
rr�z� � l�d4eÿpz � d5eÿqz�; �53�

RR
rz�z� � l�d6epz � d7eÿqz�; �54�

RR
zz�z� � l�d8eÿpz � d9eÿqz�; �55�

where

d4 � 1

2
�k2 � q2� 2p2 � k2 ÿ q2

pk2
; d5 � ÿ2q; �56a; b�

d6 � ÿ k2 � q2

k
; d7 � k2 � q2

k
; �57a; b�

d8 � ÿ 1

2

�k2 � q2�2
pk2

; d9 � 2q: �58a; b�

The surface z � 0 should be free of surface tractions. It is immediately seen that RR
rz�0� � 0, whereas

RR
zz�0� � 0 requires that

F �k� � �k2 � q2�2 ÿ 4k2pq � 0: �59�
By substituting p and q from Eqs. (50a, b) and using x � kc, Eq. (59) assumes the better known form

2

�
ÿ c2

c2
T

�2

ÿ 4 1

�
ÿ c2

c2
L

�1=2

1

�
ÿ c2

c2
T

�1=2

� 0: �60�

Eq. (60) is the equation for the phase velocity, c � cR, of Rayleigh surface waves. Thus, as is well known,
along the surface of a half-space only one mode of surface wave motion, with wave number kR � x=cR, can
propagate.
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It is now tempting to apply Eq. (24) to the problem of a time-harmonic normal point load applied on the
surface of the half-space. A point load generates surface waves, and we might consider the possibility of
determining the amplitude of these surface waves by using Eq. (24), with the modi®cation that the inte-
gration in IAB, Eq. (25), should be taken from ÿ1 to 0. For state A we take

uA
r � ÿCV R�z�H �2�1 �kRr�; �61�

uA
z � CW R�z�H �2�0 �kRr�; �62�

where C is an unknown amplitude factor. For state B we take the dummy solution

uB
r � ÿ1

2
V R�z� H �2�1 �kRr�

h
� H �1�1 �kRr�

i
; �63�

uB
z � 1

2
W R�z� H �2�0 �kRr�

h
� H �1�0 �kRr�

i
; �64�

Eq. (24) now yields

PW R�0� � ÿ 4i

k
CIAB or C � ÿ k

4i

PW R�0�
IAB

; �65�

where Eq. (46) has been used, and IAB is de®ned as

IAB �
Z 1

0

RR
rr�z�V R�z�� � RR

rz�z�W R�z��dz: �66�

Substitution of the expressions for RR
rr�z�;RR

rz�z�; V R�z� and W R�z�, given by Eqs. (53), (54) and (48) and
(49), into Eq. (66) yields a relatively simple integral over z which can easily be evaluated. The parameter kR

appearing in the integral is the solution of Eq. (59). It is well known that the equation F �k� � 0 has one real
valued positive solution. To simplify further manipulation, we introduce the dimensionless Rayleigh wave
velocity by

n � x
cT

1

kR

: �67�

We also introduce

q2
R � 1ÿ n2; �68�

p2
R � 1ÿ n2

j2
; �69�

where

j2 � c2
L

c2
T

� 2�1ÿ t�
1ÿ 2t

; �70�

where t is PoissonÕs ratio. Carrying out the integration of Eq. (66) yields after some further manipulation

JAB � ÿ 1� 3q2
R

2qR

� 1
ÿ � q2

R

� 1� q2
R

2pR

�
� qR

pR

�pR ÿ qR� � 1

pR

�
ÿ �1� q2

R�2
8p3

R

1
ÿ � 4p2

R ÿ q2
R

�
; �71�

where

IAB � lJAB: �72�
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At the surface, z � 0, the vertical displacement due to the Rayleigh wave now follows from Eqs. (62) and
(65) as

uz � ÿ kR

4i

P �d3 ÿ 1�2
IAB

H �2�0 �kRr�: �73�

This expression is rewritten as

l
P

uz

kR

� Uz�n�H �2�0 �kRr�; �74�

where

Uz�n� � i

16

�1ÿ q2
R�2

JAB

; �75�

and JAB is de®ned by Eq. (71).
It is of interest to compare this expression with the corresponding one obtained by the conventional

technique using the integral transform approach. Achenbach (1973, p. 310) has used the Laplace and
Hankel transforms to determine the response of a half-space to a normal point load of arbitrary time
dependence. For a time-harmonic point load, the Hankel transform of the vertical displacement at z � 0
follows from Achenbach (1973, p. 313, Eq. (7.233)) by replacing the Laplace transform parameter p by ix

uH
z � ÿ

P
2p

1

l
x2

c2
T

p�k�
F �k� ; �76�

where p�k� and F �k� are de®ned by Eqs. (50a) and (59), respectively. By application of the inverse Hankel
transform, we ®nd

uz � ÿ P
2p

1

l
x2

c2
T

Z 1

0

p�k�
F �k� J0�kr�k dk: �77�

To obtain the Rayleigh wave contribution from this integral, we use

J0�kr� � 1
2
H �2�0 �kr� � 1

2
H �1�0 �kr�

� 1
2
H �2�0 �kr� ÿ 1

2
H �2�0 �ÿkr�: �78�

Substitution of this result into Eq. (77) allows the integral to be rewritten as

uz � ÿ P
4p

1

l
x2

c2
T

Z 1

ÿ1

p�k�
F �k� kH �2�0 �kr�dk: �79�

The Rayleigh wave is the contribution from the pole at the point k � kR, where kR is the solution of Eq.
(59), i.e., F �k� � 0. We ®nd

uz � P
2

i

l
x2

c2
T

�k2
R ÿ x2=c2

L�1=2

F 0�kR� kRH �2�0 �kRr�; �80�

where

F 0�kR� � dF �k�
dk

����
k�kR

: �81�

Recasting Eq. (80) in the form of Eq. (74), we ®nd

J.D. Achenbach / International Journal of Solids and Structures 37 (2000) 7043±7053 7051



Uz�n� � in2�1ÿ n2=j2�1=2

8F 0�n� ; �82�

where n is de®ned by Eq. (67), and

F 0�n� � 2�2ÿ n2� ÿ 2pRqR ÿ q2
R � p2

R

pRqR

: �83�

Eqs. (75) and (82) both represent the surface wave generated by a time-harmonic point load applied
normal to the surface of a homogeneous, isotropic, linearly elastic half-space. The question of interest is
whether they do in fact give the same numerical result. This can easily be checked by a simple calculation.
Let us consider the case of PoissonÕs ratio t � 0:25. For this case, Eq. (70) yields j2 � 3, and the solution of
F �k� � 0 is

n � 0:919402: �84�
Substitution of this value into Eqs. (75) and (82) yields for both cases exactly the same value, namely,

Uz � ÿ0:917429i: �85�
The author believes that it is in fact possible to manipulate the two expressions for Uz and shows ana-
lytically that they are the same.

6. Concluding comments

It has been shown in this article that the elastodynamic reciprocity theorem in conjunction with an
appropriately selected auxiliary elastodynamic solution provides a relatively simple way to obtain dis-
placement waves generated by point loads. For an elastic layer, the method yields modal expansions for the
wave ®eld generated by a time-harmonic point load applied normal to the faces of the layer. For an elastic
half-space the surface wave generated by a time-harmonic point load normal to the surface, is obtained.

The approach presented in this article has recently been extended by Achenbach and Xu (1999) to the
analysis of wave motion in a layer generated by a time-harmonic point load of arbitrary orientation.
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